1. Calculate
$$\int_{\mathbb{R}^2} \frac{1}{(1 + x^2 + (y-x)^2)^2} \, dx \, dy.$$

Solution. By invariance under translations
$$\int_{\mathbb{R}^2} \frac{1}{(1 + x^2 + (y-x)^2)^2} \, dx \, dy = \int_{\mathbb{R}^2} \frac{1}{(1 + x^2 + y^2)^2} \, dx \, dy.$$
Using polar coordinates $x = r \cos \theta, \quad y = r \sin \theta$ we get
$$\int_{\mathbb{R}^2} \frac{1}{(1 + x^2 + (y-x)^2)^2} \, dx \, dy = 2\pi \int_{0}^{\infty} \frac{r}{(1 + r^2)^2} \, dr = \pi \int_{0}^{\infty} \frac{d}{dr} \frac{1}{1 + r^2} \, dr = \pi.$$

2. Calculate
$$\int_{\mathbb{R}^3} e^{-x^2-2y^2-3z^2} \, dx \, dy \, dz.$$

Solution.
$$\int_{\mathbb{R}^3} e^{-x^2-2y^2-3z^2} \, dx \, dy \, dz = \int_{\mathbb{R}} e^{-x^2} \, dx \int_{\mathbb{R}} e^{-2y^2} \, dy \int_{\mathbb{R}} e^{-3z^2} \, dz$$
$$= \frac{1}{\sqrt{2}} \int_{\mathbb{R}} e^{-x^2} \, dx \frac{1}{2} \int_{\mathbb{R}} e^{-y^2} \, dy \frac{1}{\sqrt{6}} \int_{\mathbb{R}} e^{-z^2} \, dz$$
$$= \frac{(2\pi)^{3/2}}{4\sqrt{3}} \frac{\pi^{3/2}}{\sqrt{6}} \frac{\pi^{3/2}}{6} = \frac{\pi^{3/2}}{3}.$$

3. Let
$$E = \{(x, y, z) \in \mathbb{R}^3 : x \in [0, 1], y^2 + z^2 \leq x^2\}.$$
Describe E and give $|E| = \text{Vol}(E)$.

Solution. The set E represents a cone around the axis x. The summit is $(0, 0, 0)$.
$$|E| = \pi \int_{0}^{1} x^2 \, dx = \frac{\pi}{3}.$$

4. For the differential equation:
$$\frac{dy}{dx} = 9x^2 \, y$$

find the general solution.
(a) $y(x) = Ae^{3x^3}$
(b) $y(x) = Ae^{3x^4}$
(c) $y(x) = Ae^{x^2}$
(d) $y(x) = Ae^{x^3}$
Solution. The correct answer is (a). By separating the variables, the equation becomes:

\[\frac{dy}{y} = 9x^2\,dx \]

and after integrating both sides we get:

\[\ln y = 3x^3 + C \]

and so \(y = Ae^{3x^3} \).

5. Suppose that \(y_0 \) satisfies:

\[(x^2 + 9)\frac{dy}{dx} = xy, \quad y(0) = 3. \]

Find the value of \(y_0(9) \).

(a) \(y_0(9) = 4\sqrt{10} \)
(b) \(y_0(9) = 3\sqrt{10} \)
(c) \(y_0(9) = 40 \)
(d) \(y_0(9) = 3\sqrt{17} \)

Solution. The correct answer is (b). The general solution to the equation can be found by separation of variables:

\[\frac{dy}{y} = \frac{dx}{x^2 + 9} \]

and after integrating both sides we get \(y_0 = A(x^2 + 9)^{1/2} \). If we require \(y_0(0) = 3 \) then \(A = 1 \) and hence \(y_0(9) = 3\sqrt{10} \).

6. Suppose that \(y_0 \) satisfies:

\[(x + 3)\frac{dy}{dx} = y - 1, \quad y(1) = 2. \]

Find the value of \(y_0(4) \).

(a) \(y_0(4) = \frac{7}{2} \)
(b) \(y_0(4) = -1 \)
(c) \(y_0(4) = 3 \)
(d) \(y_0(4) = 11/4 \)

Solution. The correct answer is (d). The general solution to the equation can be found by separation of variables:

\[\frac{dy}{y - 1} = \frac{dx}{x + 3} \]

and after integrating both sides we get \(y_0 = 1 + A(x + 3) \). If we require \(y_0(1) = 2 \) then \(A = 1/4 \) and hence \(y_0(4) = 11/4 \).

7. For the differential equation:

\[\frac{dy}{dx} = \frac{e^{5x}}{6y^2} \]

find the general solution.

(a) \(y(x) = \pm \sqrt{e^{3x}/5 + C} \)
(b) \(y(x) = \pm \sqrt{e^{3x}/5 + C} \)
(c) \(y(x) = \pm \sqrt{e^{3x}/5 + C} \)
(d) \(y(x) = \pm \sqrt{e^{3x}/5 + C} \)
Solution. The correct answer is (c). By separating the variables, the equation becomes:

$$6y^5 dy = e^{5x} dx$$

and after integrating both sides we get:

$$y^6 = e^{5x}/5 + C$$

and so \(y(x) = \pm \sqrt[6]{e^{5x}/5 + C} \).

8. Find the general solution of the equation:

$$2y dy/dx = 9x.$$

(a) \(y = \pm \sqrt{\frac{2}{3} x^2 + C} \)

(b) \(y = \pm \sqrt{\frac{2}{3} x^2 + C} \)

(c) \(y = \pm \sqrt{\frac{2}{3} x^2} \)

(d) \(y = \pm \sqrt{\frac{2}{3} x^2 + C} \)

Solution. The correct answer is (a). If we separate the variables we get:

$$2y dy = 9x dx$$

which integrates to \(2y^2 = 9x^2 + C \) from which we get (a).

9. The solution \(y(x) \) of the differential equation \((x^2 + 9)y' + xy - xy^2 = 0\) for \(x \in \mathbb{R} \) with the initial condition \(y(0) = 1/4 \) also satisfies:

(a) \(y(4) = 1/6 \)

(b) \(y(4) = -1/4 \)

(c) \(y(4) = 6 \)

(d) \(y(4) = 1 \)

Solution. The correct answer is (b). If we separate the variables we get:

$$\frac{dy}{y^2 - y} = \frac{x}{x^2 + 9} dx$$

We have

$$\int \frac{dy}{y^2 - y} = \int \frac{1}{y - 1} - \frac{1}{y} dy = \ln\left(\frac{y - 1}{y}\right) + C_1, \quad \frac{y - 1}{y} > 0$$

and

$$\int \frac{x}{x^2 + 9} dx = \frac{1}{2} \ln(x^2 + 9) + C_2$$

If we put everything together we get

$$\ln\left(\frac{y - 1}{y}\right) = \frac{1}{2} \ln(x^2 + 9) + C \implies \left(\frac{y - 1}{y}\right)^2 = A(x^2 + 9)$$

If we use the initial condition \(y(0) = 1/4 \) we get that \(A = 1 \) and finally for we can compute \(y(4) \),

$$\left(\frac{y - 1}{y}\right)^2 = 25 \implies y(4) = 1/6 \text{ or } y(4) = -1/4$$

where \(y = -1/4 \) is the acceptable solution.

10. Find the general solution of the following equations

(a) \(y' - \frac{3y}{x+1} = (x+1)^4 \)

(b) \(\cos(x)y' + \sin(x)y = 2\cos^3(x)\sin(x) - 1 \)
Solution.

(a) The differential equation is of the form \(y' + P(x)y = Q(x) \). We first find the integrating factor

\[
I = e^{\int P(x) \, dx} = e^{\int \frac{-3}{x+1} \, dx} = e^{-3 \ln(x+1)} = e^{\ln(x+1)^{-3}} = \frac{1}{(x+1)^3}
\]

We multiply both sides of differential equation with \(I \) to get

\[
\frac{1}{(x+1)^3}y' - \frac{3y}{(x+1)^4} = (x+1)
\]

by integrating both sides we get

\[
\frac{y}{(x+1)^3} = \frac{1}{2} x^2 + x + C
\]

So the general solution is

\[
y = (x+1)^3 \left(\frac{1}{2} x^2 + x + C \right)
\]

(b) We first write the differential equations in the form of \(y' + P(x)y = Q(x) \):

\[y' + \frac{\sin(x)}{\cos(x)} y = 2 \cos^2(x) \sin(x) - \frac{1}{\cos(x)} \]

Now we find the integral factor

\[
I = e^{\int P(x) \, dx} = e^{\int \frac{\sin(x)}{\cos(x)} \, dx} = e^{- \ln |\cos(x)|} = \frac{1}{\cos(x)}
\]

Now we multiply both sides of the differential equation with \(I \)

\[
\frac{y'}{\cos(x)} + \frac{\sin(x)}{\cos^2(x)} = 2 \sin(x) \cos(x) - \frac{1}{\cos^2(x)}
\]

Taking the integral of both sides yields

\[
\frac{y}{\cos(x)} = -\frac{1}{2} \cos(x) - \tan(x) + C
\]

So the general solution is

\[
y = -\frac{1}{2} \cos(x) \cos(2x) - \sin(x) + C \cos(x)
\]

11. For each of the following differential equations check if the solution exists and is unique.

(a) \(y' = 1 + y^2 \), \(y(0) = 0 \)

(b) \(y' = \frac{2y}{x} \), \(y(a) = b \)

solve the differential equation (b) and sketch the family of solutions for some initial conditions \(y(a) = b \). What happens when \(a = 0 \) or \(b = 0? \) Compare this with the existence-uniqueness theorem.

Solution.

(a) Let \(F(x, y) = 1 + y^2 \). Then both \(F(x, y) \) and \(\frac{\partial}{\partial y} F(x, y) = 2y \) are defined and continuous at all points \((x, y)\), so by the theorem we can conclude that a solution exists in some open interval centered at 0, and is unique in some (possibly smaller) interval centered at 0.
(b) In this example, \(F(x, y) = \frac{2y}{x} \) and \(\frac{\partial}{\partial y} F(x, y) = \frac{2}{x} \). Both of these functions are defined for all \(x \neq 0 \) so the existence-uniqueness theorem tells us that for each \(a \neq 0 \) there exists a unique solution defined in an open interval around \(a \). By separating variables and integrating, we derive solutions to this equation of the form

\[
y = Cx^2
\]

for any constant \(C \). Notice that all of these solutions pass through the point \((0, 0)\), and that none of them pass through any point \((0, b)\) with \(b \neq 0 \). So the initial value problem

\[
y' = \frac{2y}{x}, \quad y(0) = 0
\]

has infinitely many solutions, but the initial value problem

\[
y' = \frac{2y}{x}, \quad y(0) = b, \quad b \neq 0
\]

has no solutions.