Exercise Session, April 18, 2015

1. **Jacobian matrix.** Find the Jacobian matrix of the following maps:

 (a) Let \(u: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) be defined as:
 \[
 u(x, y) = \begin{pmatrix}
 -y \\
 x \\
 x + y
 \end{pmatrix}
 \]
 (b) Let \(v: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) and \(w: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) be defined as:
 \[
 v(x, y) = \begin{pmatrix}
 -y \\
 x \\
 xy
 \end{pmatrix}
 \]
 \[
 w(x, y, z) = \begin{pmatrix}
 x^2 + y^2 - 2z \\
 x^2 + y^2 + 2z
 \end{pmatrix}
 \]
 Find the Jacobian matrix of \(w \circ v \) by (i) computing the composition and then its Jacobian matrix; (ii) using the chain rule.

 (c) Let \(v: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) and \(w: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be given by
 \[
 v(x, y, z) = \begin{pmatrix}
 e^{y+2z} \\
 x^2 + yz
 \end{pmatrix}
 \]
 \[
 w(x, y) = \begin{pmatrix}
 \cos x \\
 \sin y
 \end{pmatrix}
 \]
 Find the Jacobian matrix of \(w \circ v \) by (i) computing the composition and then its Jacobian matrix; (ii) using the chain rule.

2. **Jacobian matrix.** Let \(v: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) be defined as
 \[
 v(r, \theta, \phi) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta).
 \]
 Find the Jacobian matrix \(J_v \) and the Jacobian, i.e., the determinant \(\det J_v \).

3. Find the Jacobian matrices of the following maps:
 \[
 v: \mathbb{R}^2 \rightarrow \mathbb{R}^3, \quad v(x, y) = \begin{pmatrix}
 \frac{2x}{1+x^2+y^2} \\
 \frac{2y}{1+x^2+y^2} \\
 \frac{1-x^2-y^2}{1+x^2+y^2}
 \end{pmatrix}
 \]
 \[
 w: \mathbb{R}^3 \rightarrow \mathbb{R}^2, \quad w(x, y, z) = \begin{pmatrix}
 \frac{x}{\sqrt{1+z^2}} \\
 \frac{z}{\sqrt{1+z^2}}
 \end{pmatrix}
 \]
 \[
 f: \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f(x, y) = \langle v(x, y), v(x, y) \rangle
 \]
 and
 \[
 w \circ v: \mathbb{R}^2 \rightarrow \mathbb{R}^2
 \]
 Give an interpretation of this result. (Hint: interpret \(w \) as a bijection from \(S^2 \setminus \{0, 0, -1\} \) onto \(\mathbb{R}^2 \). Then, since the Jacobian matrix of the composition is the identity, the relation between \(w \) and \(v \) is obvious.)
4. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be
\[
f(x, y) = \frac{x^2 y \sin(\sqrt{x^2 + y^2})}{(x^2 + y^2)^{3/2}}, \quad (x, y) \neq (0, 0)
\]
Then
(a) \(\lim_{(x,y) \to (0,0)} f(x, y) = 1 \)
(b) \(\lim_{(x,y) \to (0,0)} f(x, y) = y \)
(c) \(\lim_{(x,y) \to (0,0)} f(x, y) \) does not exist
(d) \(\lim_{(x,y) \to (0,0)} f(x, y) = 0 \)

5. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be
\[
f(x, y) = \begin{cases}
\frac{y^2}{\sqrt{y^2 + x^2}} & \text{if } (x, y) \neq (0,0) \\
0 & \text{if } (x, y) = (0,0)
\end{cases}
\]
Then
(a) \(\lim_{(x,y) \to (0,0)} \frac{\partial f}{\partial x} (x, y) = 1 \)
(b) \(\lim_{(x,y) \to (0,0)} \frac{\partial f}{\partial x} (x, y) = 0 \)
(c) \(\lim_{(x,y) \to (0,0)} \frac{\partial f}{\partial x} (x, y) \) does not exist
(d) \(\lim_{(x,y) \to (0,0)} \frac{\partial f}{\partial x} (x, y) = +\infty \)

6. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be \(f(x, y) = x^3 - 2xy + y^2 \). Then the point \(p = (2/3, 2/3) \)
(a) is a local maximum of \(f \)
(b) is not a stationary point of \(f \)
(c) is a saddle point of \(f \)
(d) is a local minimum of \(f \)

7. Let \(f \in C^2(\mathbb{R}^2) \) and \(p \in \mathbb{R}^2 \). If \(\text{Hess}_f(p) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \) then
(a) \(p \) is necessarily a local maximum
(b) \(p \) is necessarily a local minimum
(c) \(p \) is necessarily a saddle point
(d) None of above

8. Let the function \(f : \mathbb{R}^3 \to \mathbb{R} \) be \(f(x, y, z) = 2x^2 y^3 z^4 + 2x^3 y^2 - 3y^2 z - 1 \) and consider \(p = (1, 1, 1) \). Since \(f(p) = 0 \) and \(\partial f/\partial x(p) \) is not zero, the equation \(f(x, y, z) = 0 \) defines in
the neighbourhood of \((y, z) = (1, 1) \) a function \(x = g(y, z) \) which satisfies \(g(1, 1) = 1 \) and \(f(g(y, z), y, z) = 0 \) as well as:
(a) \(\frac{\partial g}{\partial x}(1, 1) = -\frac{3}{8} \)
(b) \(\frac{\partial g}{\partial x}(1, 1) = -\frac{1}{2} \)
(c) \(\frac{\partial g}{\partial x}(1, 1) = -2 \)
(d) \(\frac{\partial g}{\partial x}(1, 1) = \frac{1}{2} \)

9. Let \(D = \{(x,y) \in \mathbb{R}^2 : x > 1 \text{ and } y > -1\} \) and let the function \(f : D \to \mathbb{R} \) be \(f(x, y) = \ln(x^2 + y) \). Then a vector \(v \) in the perpendicular direction to the level curve of \(f \) passing through point \((2, 0) \) is

Page 2
(a) \(v = (-1/4, -1)^T \)
(b) \(v = (-4, 1)^T \)
(c) \(v = (4, 1)^T \)
(d) \(v = (1, -4)^T \)

10. State if the following statements are true or false.

(a) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be such that \(f(0, 0) = 0 \). If for all \(m \in \mathbb{R} \) we have \(\lim_{x \to 0} f(x, mx) = 0 \), then \(f \) is continuous at \((0, 0)\).
(b) Let \(f : \mathbb{R}^2 \to \mathbb{R} \). If \(f \in C^2(\mathbb{R}^2) \), then for all points \(p \in \mathbb{R}^2 \) we have
\[
\frac{\partial^2 f}{\partial x \partial y}(p) = \frac{\partial^2 f}{\partial y \partial x}(p)
\]
(c) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) such that \(f \in C^2(\mathbb{R}^2) \) and let a point \(p \in \mathbb{R}^2 \). If \(p \) is a stationary point of \(f \) and if determinant of the Hessian matrix \(H_f(p) \) is strictly positive, then \(f \) admits a minimum at \(p \).
(d) Let \(f : \mathbb{R}^2 \to \mathbb{R} \). If \(f \in C^2(\mathbb{R}^2) \), then
\[
\frac{\partial f}{\partial x}(x, y) = \lim_{(h,k) \to (0,0)} \frac{f(x + h, y + k) - f(x, y)}{\sqrt{h^2 + k^2}}
\]
(e) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be a function and \(p \in \mathbb{R}^2 \). Then \(f \) is differentiable at \(p \) if and only if \(\partial f/\partial x \) and \(\partial f/\partial y \) exist at \(p \).
(f) if \(f : \mathbb{R}^2 \to \mathbb{R} \) be a function. If \(f \) is differentiable at all points of \(\mathbb{R}^2 \), then \(f \) is of class \(C^1(\mathbb{R}^2) \)
(g) Let \(f : \mathbb{R}^3 \to \mathbb{R} \), be a function that is differentiable at a point \(p \in \mathbb{R}^3 \). Then the vector
\[
v = (-\frac{\partial f}{\partial x}(p), -\frac{\partial f}{\partial y}(p), -\frac{\partial f}{\partial z}(p), 1)
\]
is perpendicular to the tangent hyperplane to the graph of \(f \) at the point \((p, f(p))\).